
308-CD-001-008

EOSDIS Core System Project

SDPS Software Development Plan
for the ECS Project

January 2001

Raytheon Company
Upper Marlboro, Maryland

SDPS Software Development Plan

for the ECS Project

January 2001

Prepared Under Contract NAS5-60000
CDRL Item #049

RESPONSIBLE ENGINEER

Mary S. Armstrong /s/ 01/29/01

Mary Armstrong Date
EOSDIS Core System Project

SUBMITTED BY

William Knauss /s/ 01/29/01

Will Knauss, Director Development Date
EOSDIS Core System Project

Raytheon Company
Upper Marlboro, Maryland

308-CD-001-008

This page intentionally left blank.

308-CD-001-008

Preface

This document is a formal contract deliverable with an approval code 2. As such, the

Government reserves the right to request changes within 45 days of the initial submittal. The last

revision of this document was completed in September 1999 and .contained information about

the development organization that has since changed. This version documents the current

software development methodology, planning, and management as it exists on the ECS SDPS

program today. Any future changes in the software development process will result in an update

to this document and resubmittal to the Government

Future changes to this document shall be made by document change notice (DCN) or by

complete revision. Any future changes must be reviewed and approved by the Government.

This document is under ECS Project Configuration Control. Any questions or proposed changes

should be addressed to:

Data Management Office

The ECS Project Office

Raytheon Systems Company

1616 McCormick Drive

Upper Marlboro, Maryland 20774-5301

iii 308-CD-001-008

This page intentionally left blank.

iv 308-CD-001-008

Abstract

The ECS SDPS Software Development Plan (SDP), CDRL item 049, DID 308/DV2, defines the
steps by which the development of ECS SDPS software will be accomplished and the
management approach to software development. The SDP addresses software processes,
methods, organizational responsibilities, tools, configuration management, software quality, and
other activities relevant to accomplishment of the ECS SDPS statement of work. The SDP
describes software development processes at a summary level and makes extensive reference to
the collection of ECS SDPS Project Instructions (PIs). The PIs provide details for: 1) processes,
such as metrics collection and inspections; and 2) project standards, such as the format and
content for software development files (SDFs) and coding standards. The intent is for this
document to provide the overall high-level process and the PIs and Work Instructions (WIs) to
provide the detailed instructions on how ECS SDPS executes this process.

This plan addresses the processes used by the ECS Science and Data Processing Segment
project. The ECS Mission Operations Segment (EMOS – formerly FOS) has a different software
development life cycle and is not addressed as part of this plan.

Keywords: software, process, development, training, CASE, metrics, standards

v 308-CD-001-008

This page intentionally left blank.

vi 308-CD-001-008

Change Information Page

List of Effective Pages

Page Number Issue

Title

iii through xii

1-1 through 1-4

2-1 through 2-2

3-1 through 3-14

4-1 through 4-14

5-1 and 5-6

6-1 through 6-4

AB-1 through AB-2

GL-1 through GL-6

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number

193-308-DV2-001
193-308-DV2-001
308-CD-001-003
308-CD-001-004
308-CD-001-005
308-CD-001-006
308-CD-001-007
308-CD-001-008

Pre-Approval
Original
Original

Final
Final

Submitted as Final
Submitted as Final
Submitted as Final

November 1993
May 1994

December 1994
July 1995

November 1995
July 1996

September 1999
January 2001

94QC-0021
94-0186
95-0459
95-0837
96-0506
99-0864
01-1147

vii 308-CD-001-008

This page intentionally left blank.

viii 308-CD-001-008

Contents

Preface

Abstract

1. Introduction

1.1 Identification of Document . 1-1

1.2 Scope of Document . 1-1

1.3 Purpose and Objectives of Document . 1-2

1.4 Document Status and Schedule.. 1-2

1.5 Documentation Organization . 1-2

2. Related Documentation

2.1 Parent Documents .. 2-1

2.2 Applicable Documents.. 2-1

2.3 Information Documents . 2-2

3. Software Development Management

3.1 Overview .. 3-1

3.2 Authority, Roles, and Responsibilities . 3-1

3.2.1 Project Manager . 3-1

3.2.2 Development Organization.. 3-1

3.2.3 Systems Engineering.. 3-2

3.2.4 Maintenance and Operations.. 3-4

3.2.5 Quality Assurance.. 3-4

3.2.6 Software Engineering Process Group (SEPG) .. 3-4

3.3 Software Planning.. 3-5

ix 308-CD-001-008

3.4 Schedule and Milestones .. 3-5

3.5 Training.. 3-7

3.6 Software Tools and Environment . 3-8

3.6.1 Robust Development Environment . 3-9

3.6.2 Development Infrastructure Environment Evolution.. 3-11

3.7 Software Metrics . 3-12

3.7.1 Responsibilities .. 3-12

3.7.2 Examples of Software Metrics.. 3-12

3.8 Security .. 3-13

4. Software Development Process

4.1 Software Development Process Overview... 4-1

4.1.1 System Requirements Definition.. 4-3

4.1.2 Basic Software Development Phases .. 4-4

4.1.3 Software Integration and Test . 4-7

4.1.4 System Installation in the VATC... 4-8

4.1.5 Acceptance Test . 4-8

4.1.6 Performance Verification.. 4-9

4.1.7 Documentation.. 4-9

4.1.8 Peer Reviews.. 4-10

4.1.9 Non-conformance Reports and Patches . 4-11

4.1.10 Process Variances . 4-12

4.2 Prototyping .. 4-12

4.3 Software Reuse . 4-12

4.3.1 COTS Software.. 4-13

4.3.2 Heritage Software . 4-13

5. Software Quality

5.1 Software Quality Assurance Overview... 5-1

5.2 Quality Assurance Organization . 5-1

5.2.1 Roles and Responsibilities . 5-2

5.3 Software Quality Activities .. 5-3

x 308-CD-001-008

5.3.1 QA Audits .. 5-3

5.3.2 QA Product Evaluations.. 5-4

5.3.3 Quality Assurance Audit Criteria . 5-4

5.3.4 Quality Assurance Deficiency Reporting . 5-4

5.3.5 Quality Assurance Status Reporting .. 5-4

5.4 QA Resources and Schedule.. 5-5

6. Software Configuration Management

6.1 Configuration Management.. 6-1

6.1.1 Configuration Identification . 6-1

6.1.2 Configuration Control . 6-2

6.1.3 Software Development Library.. 6-2

6.2 Software Migration.. 6-3

6.3 Configuration Management at Operational Sites . 6-3

6.3.1 Configuration Status Accounting . 6-3

6.3.2 Configuration Audits.. 6-3

List of Figures

3-1. ECS Development Facility Environments .. 3-8

4.1-1. Software Development Process .. 4-2

4.1-2. Development Tasks and Artifacts . 4-4

List of Tables

3-1. Major Reviews and Their Definitions.. 3-6

3-2. Reviews Already Successfully Accomplished .. 3-7

3-3. EDF Environment Descriptions.. 3-9

3-4. EDF Development Environment Characteristics . 3-10

3-5. Examples of Software Metrics . 3-12

4.1-1. Software Design Documentation . 4-10

xi 308-CD-001-008

Abbreviations and Acronyms

Glossary

xii 308-CD-001-008

1. Introduction

1.1 Identification of Document

This Software Development Plan (SDP), Contract Data Requirements List (CDRL) Item 049,
whose requirements are specified in Data Item Description (DID) 308/DV2, is a required
deliverable under the Earth Observing System Data and Information System (EOSDIS) Core
System (ECS), Contract (NAS5-60000).

1.2 Scope of Document

The ECS SDPS SDP outlines the steps by which the development of ECS SDPS software will be
accomplished and the management approach to software development. The SDP addresses
software processes, products, methods, organizational responsibilities, tools, configuration
management, software quality, and other activities relevant to accomplishment of the ECS
statement of work. Overall, the plan for ECS SDPS software development consists several
documents:

• The ECS SDPS SDP – discusses software development processes at a summary level

•	 ITS policies and directives (available on the Raytheon ITS web page) – prescribes practices
that apply to the Raytheon ITS business unit

•	 ECS Project Instructions (PIs) and Work Instructions (WIs) (available on the ECS Internal
Server) – provide details of how Development and other processes on the ECS project are
executed

•	 Related Project Documentation (listed in Section 2 of this document) – provide additional
information about the ECS Project, the software product, and related processes

•	 Baselined schedules and budgets maintained for the ECS project (available from the Program
Office or Program Controls Department) – provide up to date status regarding the cost and
schedule of software products under development.

These documents are applicable to all software development processes and standards on the ECS
SDPS project unless a formal waiver identifying any deviation or exception is documented and
approved. Note that ECS PIs and WIs take precedence over ITS policies and directives since the
ECS PIs reflect the tailoring of IPDS and Raytheon SOIs to the ECS program, as well as specific
contractual obligations.

• This document discusses software development processes at a summary level.

This plan addresses the processes used by the ECS Science and Data Processing Segment
project. It covers the life-cycle and process for all the ECS SDPS releases. The EMOS has a
different software development life cycle and is not addressed as part of this plan.

1-1 308-CD-001-008

1.3 Purpose and Objectives of Document

The ECS SDPS SDP describes the processes the ECS SDPS project will use to develop and
document the ECS SDPS software. It provides a systematic approach to software development,
using NASA Software Documentation Standard, NASA-STD-2100-91, to tailor those software
engineering practices to specifically meet ECS SDPS needs. The plan is used by the
Government to monitor the procedure management, and contract work effort of the organizations
performing software development.

The Raytheon Systems Company (RSC) processes, Integrated Product Development System
(IPDS), . Software Operating Instructions (SOIs), and Raytheon ITS processes were used to
generate the process documented in this plan. By using RSC standard tailoring procedures, ECS
SDPS was able to generate this process quickly. The RSC tailoring process provided an easy way
to identify where ECS SDPS processes fit in an overall system development process.

1.4 Document Status and Schedule

The final version of this ECS Software Development Plan was submitted to the Government in
July of 1996 as an approval code 2 document. An updated version was submitted in 1999 to
reflect significant changes in the ECS SDPS software development process and life cycle. This
update provides clarification in specific areas to align our documented process with the
Capability Maturity Model (CMM). This document will be reviewed with every major ECS
Release, but may also be updated at other times if there is a need. This document does not
require formal Government acceptance. The document is under configuration control, and the
Raytheon approval authority is the Director of Engineering.

1.5 Documentation Organization

The contents of the document are as follows:

•	 Section 1: Introduction - Introduces the ECS SDPS SDP scope, purpose, objectives, status,
schedule, and document organization.

•	 Section 2: Related Documentation - Provides a bibliography of reference documents for the
ECS SDPS SDP organized by parent, applicable, and information subsections.

•	 Section 3: Software Development Management - Describes the planning associated with
software development management activities. It includes discussions of roles and
responsibilities, schedules and milestones, the development environment, and metrics.

•	 Section 4: Software Development Process – Describes the ECS SDPS development process
including the software development life cycle and software reuse.

•	 Section 5: Software Quality Assurance - Summarizes the approach to ensure that all software
meets the Performance Assurance Requirements (PAR) and the Performance Assurance
Implementation Plan (PAIP) for ECS SDPS.

1-2 308-CD-001-008

•	 Section 6: Software Configuration Management - Summarizes the approach to ensure that all
software is developed and controlled by established configuration management practices and
procedures.

This document avoids duplicating detailed information found in other documents. Even though
this is a development plan, specific dates are generally absent. The ECS SDPS Master Schedule
is a living schedule maintained in the Primavera Scheduler tool. It is the source of the most
accurate and up to date schedule for the ECS SDPS Program. The baselined schedule is
available from the Program Office.

1-3 308-CD-001-008

This page intentionally left blank.

1-4 308-CD-001-008

2. Related Documentation

2.1 Parent Documents

The following documents are the parents from which this document's scope and content derive:

101-CD-001 Project Management Plan for the EOSDIS Core System

423-41-01	 Goddard Space Flight Center, EOSDIS Core System (ECS) Statement
of Work

423-41-02	 Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System (ECS)

423-41-03	 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

NASA-STD-2100-91 NASA Software Documentation Standard

2.2 Applicable Documents

The following documents are referenced herein and are directly applicable to this plan. In the
event of conflict between any of these documents and this plan, this plan shall take precedence.

102-CD-003 Release Configuration Management Plan for SDPS

214-CD-002 Security Plan for the ECS Project

305/DV2	 Segment Design Specification for the ECS Project (Release 5Aand
subsequent releases)

311/DV2	 Subsystem Database Design and Database Schema (Release 5A and
subsequent releases - all subsystems)

334/DV1 Science System Release Plan (Release 5A and subsequent releases)

335/DV2 ECS COTS Deployment Plan

409/VE1	 ECS Overall System Acceptance Test Plan (Release 5A and
subsequent releases)

609/OP1 Operations Tools Manual (Release 5A and subsequent releases)

905-TDA-001 ECS System Baseline Specification

2-1 308-CD-001-008

2.3 Information Documents

The following documents, although not directly applicable, amplify or clarify the information
presented in this document, but are not binding.

NA

2-2 308-CD-001-008

3. Software Development Management

3.1 Overview

This section describes the planning associated with software development management
activities. It outlines the organizational roles and responsibilities identified to accomplish
software development tasks within the ECS SDPS project (3.2). It identifies the process for
documenting and disseminating information about the software development schedule (3.3). The
training plan for personnel who will be responsible for, or support, software development (3.4) is
provided. A description of the software engineering environment (a collection of integrated
hardware and software tools) used to automate and support software development processes (3.5)
is described. The metrics program, which supports managing (by monitoring and assessing) the
software process (3.6), is described. The security planning (3.7) is outlined.

3.2 Authority, Roles, and Responsibilities

The ECS SDPS Project is composed of one software development organization, the
Development Department. However, the activities of software development span multiple
organizations within the ECS SDPS project. The authority, roles, and responsibilities of the
technical staff responsible for software releases within the ECS SDPS Project are described
below. The organization charts are posted on a periodic basis to the ECS Internal Server.
Although, the following sections provide a discussion of the roles and responsibilities of the
organization, the organization charts provide the details of where individuals report and the
underlying structure of the organizations discussed here.

3.2.1 Project Manager

The ECS SDPS Project Manager is responsible for ensuring that all the ECS SDPS organizations
involved in producing the software product are synchronized in their planning and execution of
the process. The ECS SDPS Project Manager is the authority for making cross-functional
organization decisions.

3.2.2 Development Organization

The ECS SDPS Development Department is responsible for executing the software development
process to produce and integrate the custom software and deliver the product to the System
Verification group. The ECS SDPS Development Director is considered the “software lead” on
the project. As the software lead, the Development Director . is responsible for governing all
software development-related processes, and for the development of software plans. For
example, if Science Data Engineering (SDE) is developing code that will be delivered to the
Distributed Active Archive Centers (DAACs), then SDE personnel are responsible for following
those software development processes applicable to writing custom software. The Development
Director or his designee is the chair for the program level SEPG, as the software lead of the

3-1 308-CD-001-008

program. Also, the ECS SDPS Development Director is responsible for ensuring that software
development plans and processes are synchronized with and supported by plans developed in
other portions of the program organization. This includes, for example, QA plans, CM plans,
and Systems Engineering plans such as the Science System Release Plan (SSRP).

3.2.2.1 Subsystem Groups

The Development Department is organized intoGroups, which generally equate to subsystems or
collections of subsystems that correspond to particular WBS Elements. For instance, the Science
Data Server traces to WBS 4.4.3, whereas the Planning Subsystem traces to WBS 4.4.5. In some
cases, to balance the organization, WBS elements are shared across groups. Each group has a
lead who is responsible for coordinating all development activities within the group.. This
coordination includes technical as well as cost and schedule, and includes responsibility for L4
requirements definition, design, code/unit test, and production of deliverable documentation
resulting from these activities. The groups provide support for system integration, which is
managed by the Construction Office. The Group Leads interface with the Development
Department Director, Systems Engineering, and other organizations.

3.2.2.2 Construction Office

The Construction Office controls and manages the system integration. This integration includes
new functionality for each release in addition to any integration that must occur for patches to
existing releases. The Construction Office controls the integration budget as well as the actual
execution of the integration. Subsystems provide personnel to perform the integration under the
supervision of the Construction Office personnel. The Construction Office is responsible for
determining when a release or patch is ready to be turned over to the System Verification group
for system testing. The Construction Office also manages cross-subsystem / group coordination
within Development. The coordination that it supports includes Rough Order of Magnitude
estimates (ROMs) in association with new scope (implemented through configuration change
requests), participation in project CCBs, metrics collection across Development, documentation
generation, and cross-subsystem detailed design issues. The Development Engineering
organization facilitates problem solving at a finer grained level (i.e. , the coding level rather than
an architectural level) than the Systems Engineering organization.

3.2.3 Systems Engineering

The Systems Engineering Department (SED) plays a role in a variety of software processes. The
details of their roles and responsibilities are outlined in the following sections. These are not the
only roles played by Systems Engineering. This is just the list of roles that System Engineering
plays in the software life cycle.

3-2 308-CD-001-008

3.2.3.1 Requirements Engineering and Architects Office

Systems Engineering and specifically, the Architect's Office (AO), is responsible for providing
technical clarification of the system level requirements (L3s) through the use of operational
concepts, high-level scenarios, technical directives, and trade-off studies. These techniques aid
in isolating the applicable subsystem(s). The AO is responsible for performing the allocation of
L3 requirements to the subsystems and providing draft detailed level requirements (L4). The
Development Department finalizes the L4 requirements. Systems Engineering is then responsible
for ensuring that the L3s are covered by the L4s through participation in peer reviews, as well as,
traceability checks via the requirements database.

3.2.3.2 Configuration Management

ECS Configuration Management performs the daily management of the ECS system software,
hardware, and documentation baselines necessary to develop, implement, test, and maintain the
system. The ECS Configuration Management Office is responsible for maintaining and
administering the ECS software and hardware baseline. This is the organization responsible for
performing Software Configuration Management (SCM) on this project.

3.2.3.2 Systems Verification and Acceptance Test

Systems Engineering is responsible for execution and oversight of system level testing. This
includes testing the system in the Verification and Acceptance Test Center (VATC) and the
Performance Verification Center (PVC). The Development Department integrates the software
and then turns it over for system level testing. Systems Engineering tests the system in . DAAC-
like environments in the Landover facility, the VATC and the PVC. It is responsible for
ensuring that requirements are tested, .that the system will work when fielded to the DAACs, and
that the system meets performance specifications. This system level testing is also called
acceptance testing since Systems Engineering is accepting the deliverable on behalf of the
customer and verifying system requirements and reporting verification status at the Consent to
Ship Review (CSR). After successful CSR, the system is fielded to the DAACs. At the DAACs
SE is responsible to ensure that the system works according with the liens and limitations
determined at the CSR.

3.2.3.3 COTS Upgrades

Systems Engineering leads the COTS Upgrade process with support from the Development
Department to integrate the COTS upgrade in existing custom software baselines. The
procedures covering the life cycle of upgrading a COTS product are provided in the DID 335,
ECS COTS Deployment Plan. The process includes the requirements analysis that will initiate an
upgrade activity, the reviews and sign off review boards utilized along the way as
checkpoints/milestones to insure accuracy, adequate verification, and coordination with all ECS
segments, customer activities, and DAACs that will be the recipient of the upgrades.

3-3 308-CD-001-008

3.2.4 Maintenance and Operations

The ECS SDPS M&O Manager is responsible for the overall execution of all ECS SDPS
activities related to ECS SDPS software delivered to the DAACs. Key M&O management
responsibilities include coordination with ESDIS, DAAC management, and science working
groups; establishing M&O policies and procedures; facilitating cross-DAAC information sharing
and problem resolution; managing the sustaining engineering budget; coordinating patches and
maintenance releases to already fielded baselines; and maintaining the ECS Operations Plan
(DID 608). The main interaction with M&O for new software development is the communication
that must occur between Development and M&O to provide the information required to update
the M&O procedures.

3.2.5 Quality Assurance

The Quality Assurance organization is responsible for ensuring through an audit process that the
software development process outlined in this plan as well as the PIs are followed. For more
information on Quality Assurance, see section 5 “Quality Assurance”.

3.2.6 Software Engineering Process Group (SEPG)

The SEPG is a group established to define and refine the software development process for ECS
SDPS. This includes all processes that influence the software development processes. For
example, CM processes may not be directly software development related, but they may dictate
how software is developed, thus they are directed by the SEPG. The SEPG is comprised of
representatives from each organization, Systems Engineering, Quality Assurance, Science Data
Engineering, Development, and Maintenance and Operations. The Development Department
Director or their designee chairs the SEPG.

The SEPG is the central authority for software methodology, processes, and standards that span
all ECS SDPS organizations and affect the development or deployment of software products.
The SEPG regularly reviews software development processes and standards for the need to
update, based on audit and metric reports. The SEPG will meet as required to address software
engineering process issues that span the software development life cycle. The SEPG is a
coordinating body, which ensures that each organization knows what processes they are
responsible for and the scope of each process. The SEPG does not define the low level details of
each process but commissions the organizations to define or refine the process and reviews the
resulting PIs or WIs.

The SEPG is also responsible for the evaluation of process oriented lessons identified during a
release and modification of appropriate PIs and the SDP, if required, to ensure that the lessons
learned are incorporated in the defined ECS SDPS software development process and
implemented in subsequent releases.

3-4 308-CD-001-008

3.3 Software Planning

A planning cycle for each release occurs prior to the completion of the previous release. A draft
Science System Release Plan (SSRP) is provided which describes the system requirements (L3s)
and system capabilities. A system capability is a grouping of Level 4 requirements defined in
order to be able to track a set of requirements throughout the development of the release. A
capability ID is used as a code in the master schedule and estimates for level of effort are defined
at the capability level.

After the draft SSRP is available, the capabilities are detail planned. An estimate of the source
lines of code (SLOC) is generated. The SLOC estimate includes new, modified, and reused lines
of code. An estimation model converts the SLOC estimates into level of effort estimates for
requirements, design, code and unit test, and integration. These estimates are used to plan for
staffing needs as well as to use as a basis for generating the detailed level schedule. The model is
based on experience gained during prior releases. Finally, the maintenance of the release is also
estimated based on the SLOC and past experience with the number of non-conformance reports
(NCRs) per 1000 SLOC and the number of hours to fix an NCR. The estimates are retained for
planning the next release.

3.4 Schedule and Milestones

Detailed schedules, including major milestones, are maintained in the ECS SDPS Master
Schedule. These schedules are release oriented and contain software development activities.
The ECS SDPS Master Schedule contains the planned software development schedule for each
release. The Master Schedule was developed from the spacecraft launch dates and the EOSDIS
Ground System Integration dates for the EOS Terra, Aqua, and Landsat 7 missions.

Each release begins with a planning period in which the requirements are analyzed and the
schedules “baselined”. The ECS SDPS Intermediate Logic Network (ILN) was developed from
the ECS SDPS Master Schedule. The ILN is available electronically through the ECS SDPS
scheduling tool. It provides a logic network of the software development, hardware procurement,
integration, and acceptance test activities for each ECS SDPS Release. The ILN provides
schedules down to the software component level for the design, implementation, and integration
phases of software development. It provides sufficient detail for critical path and float analyses
for each release.

Detailed descriptions of the content of each release are provided in the Science System Release
Plan (SSRP - DID 334) delivered prior to the requirements phase of each release. It provides a
listing of the capabilities scheduled for each release in addition to the Level 3 (L3) requirements
that will be satisfied or partially satisfied in the subject release.

Table 3-1 contains the major reviews for each release and their definitions. Some of these
reviews are with the customer in attendance and others are internal only. The common thread
among them is that they are focused on one release at a time. In other words, the IRR is not
focused on all the requirements from now to the end of the project, but only for a particular
release.

3-5 308-CD-001-008

Table 3-1. Major Reviews and Their Definitions

Review Review Definitions

Incremental Release
Review (IRR)

At the conclusion of the Preliminary Design phase an IRR is conducted, to
promote a common understanding between the ECS SDPS project and
ESDIS of the capabilities that ECS SDPS must provide. This review
includes an understanding of the requirements through use case scenario
presentations.

Test Readiness Review
(TRR)

Conducted after the Software Turnover Meeting, that is after the software
has been turned over from integration testing into acceptance testing. This
review signifies that the acceptance test procedures can be executed in the
VATC. This is an internal review, not one with the customer.

Consent to Ship Review
(CSR)

Review to determine the readiness of a release for transition to sites for
acceptance testing.

Site Readiness
Assessment (SRA)

At the completion of system test for each release, a technical exchange
meeting is conducted with the DAACs and ESDIS to assess the readiness
of the release for operations. This happens for all future releases, where
the RRR only happens at the conclusion of the last release.

Release Readiness
Review (RRR)

Conducted at the ECS SDPS system level for a GSFC project review team
upon completion of release acceptance testing. The RRR is held to
determine if the release is ready for transition to IV&V and Operations. This
review is only held at the conclusion of the last release (currently 6B).

Table 3-2 contains a list of the reviews that have already been successfully accomplished on the
program. This table is provided to specify the portion of the software development life cycle
accomplished to this point in the project. Since these reviews have been completed successfully,
they will not be repeated for each release. The architectural structure of the system was put into
place at the System Design Review and has not changed over the many releases and patches of
the system. The changes that occur with each release are minor and do not disrupt the overall
architecture already reviewed. As new components are added or deleted, these are discussed in
the IRR for the subject release. The preliminary design and detailed design of each of the
releases is reviewed through peer reviews. The overall preliminary and detailed designs have
already been reviewed, and thus, what occurs from this point on are additions or deletions to that
already approved design. The design documentation available as a draft at the IRR and “as-
built” at the conclusion of each release is updated to reflect the changes that occur during each
release.

3-6 308-CD-001-008

Table 3-2. Reviews Already Successfully Accomplished

Review Review Definitions

System Requirements
Review (SRR)

The SRR encompassed a complete review of the ECS specification and the
EOS/EOSDIS Requirements that drive the specification, it promoted a
common understanding between the Project and the Contractor of the
capabilities that ECS must provide.

System Design Review
(SDR)

At the conclusion of the system design phase, a formal SDR was
conducted to address the system architecture and the definition of the
system level interfaces. This review signifies the completion of system
design.

Preliminary Design
Review (PDR)

At the conclusion of the preliminary design phase, a formal PDR was
conducted to address the lower level preliminary design. It was conducted
with the customer and user community.

Critical Design Review
(CDR)

At the conclusion of the detailed design phase, a formal CDR was
conducted to address the very detailed design issues. There were two of
these conducted. One for Release A detailed design and one for Release
B detailed design.

Interim Release
Readiness Review
(IRRR)

At the conclusion of the system test phase of the “at-launch” Landsat and
AM-1 systems, an IRRR was conducted to determine that the release was
ready for transition to Operations.

3.5 Training

This section addresses the requirements of NASA-STD-2100-91, NASA-DID-M200,
Development Activities Plan, Section 7.0, Training for Development Personnel Planning. The
requirements of Section 7.0 include:

• defining the personnel requiring training,

• identifying the types of training by categories of personnel, and

• identifying the plan for the conduct of training.

An RSC training committee exists to provide training to projects. ECS SDPS maintains
representatives on this committee and submits its training needs based on the types of training
beneficial to ECS SDPS and the needs of the individuals on the project. For example, software
developers can sometimes benefit from training on use of software tools, C++ and/or Java,
object-oriented design, etc. Training needs are assessed at the department level based on the
proficiency of individuals in the department in their jobs, anticipated company business
directions, and individual career goals.These assessments are provided to the training committee
by each department’s representative. The training committee then either brings in training or
schedules the individuals for vendor training depending on the circumstances. The ECS SDPS
representatives to the training committee are responsible for providing accurate and timely
information about their training needs. They are also responsible for gathering feedback from
the ECS SDPS departments that they represent.

3-7 308-CD-001-008

This process was put into place for the following reasons:

• to ensure that training activities are planned,

•	 to provide training for developing skills and knowledge needed to perform management and
technical roles,

•	 to ensure that individuals in the organization receive the training necessary to perform their
roles.

Both process and tool oriented training requirements are identified and coordinated by the RSC
training with the help of the ECS SDPS representatives. As additional training curriculum is
identified, the training curriculum is updated.

A training administrator is responsible for the training program. The roles and responsibilities of
the training administrator include coordination with instructors, scheduling resources for each
course, notifying the representatives of the training committee of course details, ensuring that
materials are available and distributed on time, collecting feedback from each course (course
evaluations), and maintaining records of course conduct.

3.6 Software Tools and Environment

The ECS Development Facility (EDF) is a collection of hardware components and software tools
that act in combination to support software development processes. The EDF is used to support
software development and maintenance for all releases, thereby ensuring a consistent set of tools
throughout the project. The environment supports all software processes from initial
specification through integration and system turnover to test. In addition, the environment
supports configuration management of all of the products of the software process.

This section focuses mainly on the hardware components and software tools that exist in the
Development Infrastructure Environment of the EDF, which is separate from the Office
Automation Environment of the EDF, as depicted in Figure 3-1.

1.
SCM Build

Environment
Developer Build

Environment
Code, Unit Test, &

Integration Environment
Design Tools
Environment

Office Automation
Environment

Experimental
Environment

Development Infrastructure
Environment

ECS Development Facility

Figure 3-1. ECS Development Facility Environments

3-8 308-CD-001-008

The Development Infrastructure Environment is logically separated into the multiple
environments described below, which are used to group and define the primary uses for specific
computers. This does not preclude the possibility of a machine being used to perform concurrent
functions that are logically associated with different environments.

Table 3-3. EDF Environment Descriptions

Environment Name Environment Description Typical Users

Experimental Environment Computers used for evaluations, prototyping,
demonstrations, and COTS upgrade experiments.

Developers
(authorized to do
prototypes)

Developer Build
Environment

Computers building the software during code and
unit test. These platforms are specifically set up for
compilations only. They are devoid of software that
will allow the running of the ECS SDPS
components. These were established to baseline
the build environment and ensure that the
developers are building the software with the same
platforms as SCM.

Developers

SCM Build Environment Computers for building the software on the ECS
SDPS code baseline. The SCM group schedules
the nightly builds of the ECS SDPS software on
these hosts. They are configured the same as the
Developer Build platforms to ensure consistency.
They are isolated to ensure that the nightly builds
will complete in a timely manner.

SCM

Code, Unit Test, and
Integration Environment

Computers used for making code changes, unit
testing these changes and then integrating the
changes.

Developers

Design Tools Environment Computers used for using CASE tools during the
design phases of a release. These computers also
house tools such as Discover, which allows the
reverse engineering of existing code into models.

Developers

Office Automation
Environment

Computers on the desks of personnel for the use of
creating documentation, presentations, and other
office automation tasks.

All ECS personnel

These environments all contribute to the “software engineering environment”, which is the
environment that allows for the development of all the artifacts of the software process. Where it
is important, references to the specific environments within the EDF will be made clear.
Otherwise, for readability the term "EDF" is used and should be interpreted contextually.

3.6.1 Robust Development Environment

Table 3-4, EDF Development Environment Characteristics, defines the software engineering
development support functions that are required for a robust development environment, the kind

3-9 308-CD-001-008

of environment typical of a software project as large and complex as ECS SDPS. The ECS SDPS
environment is an open environment, tailored to support development in a number of different
programming languages using different design methods. This describes the general categories of
tools. The last column, ECS Tool, provides specific examples of the tools used on ECS SDPS.

Table 3-4. EDF Development Environment Characteristics (1 of 2)

Tool Category Category Description ECS Tool

Analysis & Design Support

Requirements analysis Tools must be able to store requirements
statements and relate them to other things (i.e.
higher level requirements, design, etc.)

MS Access

Design Tools must be able to support the
methodologies specified in the software
development process identified in this
document, such as object-oriented design
(UML) and entity-relationship diagrams for
database design.

Rational Rose

Graphical User Interface (GUI)
builders

Tools must be able to allow the rapid
development of graphical user interfaces.
These could be for Motif applications as well as
Java applications.

Builder Xcessory

Automated code generation The designs must be able to generate code
whenever possible such as generating the
header files from the object-oriented design tool
and generating user interface code from the
GUI builders.

Rational Rose,
Builder Xcessory

Code Development Support

Compilers Tools to compile code on multiple platforms.
Multiple languages are supported, so multiple
compilers are required.

compilers from the
hardware vendors
Sun, SGI, HP

Linkers/loaders Tools to link compiled code into executables. same as above
Debuggers Tools to debug executables during the code and

unit test phase of development as well as during
integration.

same as above

Code Coverage Tool Tools to analyze the paths through the code
during unit test runs.
about the “coverage” of a unit test.

Pure Coverage

Memory Leak Detectors Tools to analyze the allocation and deallocation
of memory in C and C++ programs.
would report memory leaks as well as report
memory usage violations.

Purify

Integration & Test Support

Simulation/emulation tools Tools to simulate user interfaces and their
interaction with the system.
regression testing GUI applications.

XRunner

This provides information

These tools

This is useful for

3-10 308-CD-001-008

Table 3-4. EDF Development Environment Characteristics (2 of 2)

Tool Category Category Description ECS Tool

Test performance reliability Tools to capture the performance and reliability
metrics of programs.
statistics such as the execution times of test
runs and the percentage of successful
execution of the tests.

LoadRunner

Other

Defect tracking Tools must be able to support the tracking of
non-conformance reports (NCRs), which are
liens against a software product.
should allow for the tracking and categorization
of defects / errors in the product.

DDTS

Documentation Tools must be able to support the generation of
documentation, which includes multi-media
information such as screen dumps and other
figures and diagrams.

MS Office,
FrameMaker

Lines of code counters Tools must be able to read the source lines of
code and calculate totals at a summary level.
This is used to track the progress of
development.

kdsi
javancss
Raytheon code
counter

These tools would capture

These tools

While Sun and SGI are the primary development platforms, there are also sufficient numbers of
other Unix platforms (HP, DEC, and IBM) for developers to access if necessary. These are
available to support porting efforts for those portions of the system that must be available on
multiple software platforms (for example, Toolkit and EOSView). The development
environment on each of the Unix platform is the standard development environment of the
hardware vendor.

Software developers are typically provided with a computer with X-window capabilities. This is
most often an X-terminal, which runs off an X-terminal server (a Sun server). Other desktop
development options are a Sun workstation or a PC with X-terminal emulation capabilities.
Regardless of the platform on the developer’s desk, office automation environments are provided
in some form in order for developers to provide necessary documentation. A separate PC
typically provides the office automation if the developer is not using a PC for their development
platform. Other times the office automation environment is provided by a PC emulator on the
Sun workstation or X-terminal server.

3.6.2 Development Infrastructure Environment Evolution

The ECS SDPS Development Infrastructure Environment cannot be static if it is to remain
useful. It must evolve as new versions of COTS software become available and necessary due to
support issues with the vendor. Therefore, a mechanism must be in place in order to upgrade or
maintain the development environment.

3-11 308-CD-001-008

Requests for hardware or software changes in the EDF must be documented and controlled.
Although configuration change requests (CCRs) may originate from any user in the EDF, the
EDF Change Control Board (EDF CCB) must approve all CCRs. All EDF CCRs are
dispositioned by the EDF CCB and tracked to closure. The EDF CCB and COTS upgrade
processes are documented in project instructions.

3.7 Software Metrics

The process of software development can be effectively managed (monitored and improved
upon) only if there is an objective means of measuring the quality of the development efforts.
The ECS SDPS Project metrics program, organizational interfaces, responsibilities, and reporting
vehicles are derived from the RSC Software Operating Instructions (SOIs) through the tailoring
process. The SOIs provide a standard description of metrics and the methods for calculating
them to ensure consistent implementation across projects and organizations.

3.7.1 Responsibilities

Each ECS Department is responsible for establishing and reporting its metrics for the ECS SDPS
Project. The ECS Development Director is responsible for establishing software metrics for the
ECS Project, and ensuring that they are implemented within the Development Department or
other departments as needed (e.g., M&O collects metrics that indicate the status of software non-
conformance reports for software in operation at the DAACS).

3.7.2 Examples of Software Metrics

Table 3-5 shows the list of metrics that are collected and analyzed at this time. The list may
changed in the future as described above, but this table provides an example of some of the
metrics that have been found to be useful management tools.

Table 3-5. Examples of Software Metrics (1 of 2)

Metric Description

Software Size Shows the total software size typically by subsystem. The rate at which
the total software size increases or decreases in conjunction with
hours expended provides useful information about productivity. It is
also used to estimate the number of defects that will be incurred later
in the life-cycle.

Non-conformance Reports Shows the number of severity 1, 2, and 3 NCRs and what state they
are in. The number of defects provides an estimate of the quality of the
code and the process as well as an estimate of the remaining rework
to be done. This metric currently is calculated for NCRs written prior to
shipment of the product. The NCRs from the field will also be
measured.

Staffing Shows the full-time equivalent engineers of the software development
staff. This provides the resource base from which the work can be
accomplished.

3-12 308-CD-001-008

Table 3-5. Examples of Software Metrics (2 of 2)

Metric Description

Cost Performance Index Shows the budget of work performed (BCWP) / actual cost of work
performed (ACWP). This provides an indicator of the efficiency of the
progress being made towards the estimated costs.

Schedule Performance Index Shows the budget of work performed (BCWP) / budget of work
scheduled. This provides an indicator of the efficiency of the progress
being made towards the scheduled work.

3.8 Security

The ECS SDPS project will employ security practices and procedures to ensure the security,
integrity, and continued operation of the EOSDIS Core System and the information it stores and
processes. These practices and procedures are defined in the Security Plan for the ECS Project,
CDRL 214-CD-001-001, and implemented by the ECS SDPS Systems Engineering Department
designated Project Security Manager. There also exists a Technical Security Interoffice Working
Group, which is used to decide on security issues and disseminate decisions. The security
practices and procedures are summarized in the following paragraphs. For details, refer to the
Security Plan.

The ECS Security Plan addresses sensitive, unclassified information and national resource
protection requirements associated with ECS SDPS design, development, implementation,
operation, and maintenance. The objectives of the ECS security plan and program are:

a.	 to establish a baseline for updating, improving, developing, maintaining, and managing
Automated Information Systems (AIS) security requirements for ECS SDPS,

b.	 to ensure that the ECS SDPS design and implementation incorporate federal and NASA
AIS security policies and guidelines,

c.	 to promulgate an ECS SDPS AIS security policy and to guide AIS security procedures
for ECS SDPS,

d.	 to document the current AIS security environment, establish program objectives, outline a
plan of action with milestones for implementing the ECS SDPS AIS security program,
and implement the plan.

AIS security management requires specific activities throughout the ECS SDPS lifecycle. These
activities include administrative, physical, personnel, and technical (some software related)
measures. The preliminary design ensures re-evaluation of system requirements from a security
perspective prior to each release, incorporation of security requirements in the ECS SDPS system
and segment design, and planning for security testing and evaluation and for configuration
management.

3-13 308-CD-001-008

This page intentionally left blank.

3-14 308-CD-001-008

4. Software Development Process

4.1 Software Development Process Overview

The ECS SDPS project is delivered in several releases or drops. An evolutionary development
process minimizes integration and test risk, and facilitates availability of system functionality
when it is required. The contents of each release are controlled by the Science System Release
Plan for that release. Any changes in functionality of the release require a CCR to document the
change. Figure 4.1-1 shows the entire development process. This document, however, will only
address the “software” tasks of this process. This entire cycle is executed for each release.

Figure 4.1-1 was derived from the IPDS through a tailoring process. The IPDS provided the set
of tasks and these were tailored for the ECS SDPS project. Each task is decomposed into
subtasks. Project instructions are mapped back to the tasks that they support. The tasks describe
what needs to be done and the project instructions describe how the tasks are to be performed.
The tailored IPDS process is available on the EDHS Internal Server along with the project
instructions.

4-1 308-CD-001-008

PROGRAM
MANAGEMENT

PRELIMINARY
DESIGN

IRR
DETAILED

DESIGN
PROCUREMENT

SOFTWARE
IMPLEMENTATION

AS BUILT
DOCUMENTATION

INTEGRATION TRR

SYSTEMS
ACCEPTANCE

TEST

CONFIGURATION
AUDITS

IC&T Release
End

Release

Start REQUIREMENTS
IPDR

Gate 7

TRR/

SRR
Gate 9 CSR SITE

OPERATIONS

IPDR
Gate 10 SRA*

SUSTAINING
ENGINEERING

*For Final Release:
Replace SRA with RRR (3-18)

Figure 4.1-1. Software Development Process

4-2 308-CD-001-008

4.1.1 System Requirements Definition

The development process for any release within the ECS SDPS project begins with a
Requirements Definition phase. This phase is performed at the outset of each release to define
the environment and functionality for the entire system. The box in Figure 4.1-1 entitled “1-2
REQUIREMENTS” actually has two parts, a System Requirements Definition and a Software
Requirements Analysis. The software development organization supports this entire phase;
however, the SED has lead responsibility for many of the activities that occur during this time.
The software requirements analysis is addressed in Section 4.1.2.1 Software Requirements
Analysis.

The Functional and Performance Requirements Specification (F&PRS) and the Interface
Requirements Documents (IRDs) provides the system level requirements for ECS (Level 3 (L3)
and interface requirements). SED is responsible for ensuring the proper allocation of these L3s to
releases as well as to system configuration items; jointly with the Development Department. The
requirements may be allocated to computer software configuration items (CSCIs) or hardware
configuration items (HWCI). SED also provides an operations concept or architectural scenario
for how these L3s interact with the CSCIs. This provides the basis for breaking the L3s down to
a lower level of detail.

In this phase, the system requirements and system tools are analyzed. The architecture model (as
defined in DID313 and DID305) is revised to include new interfaces as required due to the L3
requirements allocation. Typically most of the CSCIs are already identified in prior releases, and
later releases add capabilities to existing CSCIs which are appropriate. This does not preclude
the definition of a new CSCI in a later release if the corresponding functionality does not
correspond well with existing CSCIs.

Additionally, the following tasks are performed.

•	 The system capabilities are identified for each release and documented in the Science
System Release Plan. A system capability is a high-level description of a group of
one or more requirements. The system capability name is used for tracking purposes
during scheduling, integration, and delivery to test. Requirements (L3) are mapped to
the system capabilities. During the Software Requirements Analysis phase, the L4
requirements are also mapped to the system capabilities.

•	 New CSCI interfaces and system level scenarios are defined. The interfaces at this
point are named and a protocol supplied. The details of the interfaces, for example the
data structures passed, are not defined until the design phase.

•	 Software sizing in terms of Source Lines of Code (SLOCs) is re-estimated by the
Development Department. Estimates for system capabilities (groups of requirements)
already exist, but the estimates may need to be revised due to the operations concept
produced during this phase.

4-3 308-CD-0001-008

At the conclusion of the system requirements definition phase, SED produces the Science
System Release Plan. This plan provides the customer and the other ECS SDPS organizations
with a system description for a release. The other organizations such as Development, Science
Data Engineering, and M&O use this document to finalize their detailed plans for the release.

4.1.2 Basic Software Development Phases

Figure 4.1-2 shows the software development activities of a typical capability and the artifacts
produced from each stage. The activities are at the top of the bars and the artifacts below the
bars. Each phase contains a peer review (the milestone in the figure) of the outputs and a workoff
period. The workoff period is where the defects from the peer review are resolved, resulting in
improved artifacts. Each system capability is planned in the master schedule in this manner.

Requirements
Review / Workoff

Preliminary Design,
Inspection, Workoff

L4 Requirements Detailed Design,

L3 to L4 Traces Inspection, Workoff

.Sitemap updates
Use Cases Code,

Class Diagrams Preliminary Design CUT Inspection, Workoff

Sequence Diagrams Artifacts Unit Test Preparation,

Integration Test Plan

Updates to Design Unit Test Execution

DID 305 Updates and Artifacts Pre-integration,
DID 313 Updates
DID 609 Updates PDL or State and Updates to EDF Integration

Transition Artifacts
Diagrams Code

Integration Test Unit Test Procedures and Updates to

Merge,

Procedures Artifacts
Unit Test Plans Unit Test Results
DID 311 Updates and

Merge Form
Integration Test

Results

Figure 4.1-2. Development Tasks and Artifacts

4.1.2.1 Software Requirements Analysis

In this phase a set of Level 4 requirements are generated based on the Level 3 requirements
allocated to each of the CSCIs by the SED during System Requirements Definition
(section 4.1.1). Potential candidates for software reuse (heritage software, ECS SDPS common
software, and commercial-off-the-shelf (COTS) software) may be explored during the analysis.

The L4 requirements are traced to the L3 requirements and system capabilities during software
requirements analysis. The conclusion of the software requirements analysis is marked by a peer
review in which the L4s and their mapping to L3s and system capabilities are reviewed. SED is a
participant in this review to ensure that the intention of the L3 allocation and operations concept

4-4 308-CD-0001-008

development has been carried forward in the L4 requirements. After all the defects from the peer
review have been corrected, the L4 requirements with their mappings to L3s are provided to SED
for incorporation into a CCR to be presented to the Science Development (SD) CCB. Upon
approval of the CCR, the Requirements Verification Traceability Matrix (RVTM) is updated to
reflect the requirement changes.

4.1.2.2 Preliminary Design

During the Preliminary Design phase, a high-level design is generated for each system
capability. The preliminary design includes an almost identical set of design artifacts as detailed
design, but the artifacts describe the design at a higher level.

The Rational Rose analysis and design tool is used to document the object-oriented artifacts of
the design (object diagrams, sequence diagrams, use case diagrams, etc.). The Unified Modeling
Language (UML) is the methodology used on ECS.

High-level descriptions of the artifacts generated during preliminary design are provided below.
These examples are provided only to illustrate the types of artifacts produced during this phase.
The most up-to-date list of preliminary design artifacts is documented in the PI for peer
reviewing design. It is important to note that these artifacts apply to the new capabilities only.
For example, use case diagrams do not exist for all the previous releases of ECS since UML was
not the original methodology used on the program. Use case diagrams will not be produced for
all the previous capabilities, only the new capabilities for a release.

• L4 requirements and their mapping to components of the design.

• HW/SW mapping showing what H/W components the S/W executes on.

•	 Object-oriented design artifacts such as: use case diagrams, class diagrams, sequence
diagrams.

•	 Design deliverable documents: the Segment/Design Specification (305), Internal ICD
(313), and Operators Tools Manual (609) - Release 5A and subsequent releases.

• Integration Test Plans

•	 SLOC and resource estimates. This is revised from the original estimates in order to
review the feasibility of the implementation schedule.

Peer reviews are conducted to validate allocation of level 4 requirements to the design
components and to validate the overall high-level design itself. Potential candidates for software
reuse are explored during this phase. The successful completion of the preliminary design peer
review and the correction of all defects signify the completion of the preliminary design for that
capability. The detailed design phase for that capability then begins.

4-5 308-CD-0001-008

4.1.2.3 Detailed Design

During the Detailed Design phase, a detailed "code-to" design is performed based on the
preliminary design approved during the preliminary design peer review. In addition to the list of
preliminary design artifacts, the following artifacts are generated. The most up-to-date list of
detailed design artifacts is located in the PI for the design peer reviews.

•	 Program Design Language (PDL) to describe the complex algorithms of methods.
Guidelines for which methods require PDL are included in the PIs.

• State Transition diagrams can be developed as an alternative to the PDL.

•	 Fully populated object-oriented design artifacts. At preliminary design the
object-oriented artifacts are at a high-level. At this stage, they are fully defined. For
example, the class diagrams will include all classes with all attributes and their data
types and all methods with full signatures.

• Updates to the Release x Database Design and Database Schema Specifications (311)

•	 Integration Procedures are produced providing detailed steps on how to integrate the
final software capability. These Integration Procedures are incorporated in the
Acceptance Test Procedures by the System Verification group within SED.

Peer reviews are conducted to validate the detailed design of the capability. After completion of
all the defects identified during the peer review, the detailed design phase is complete and
implementation can begin.

4.1.2.4 Implementation

This phase can be broken down into the following activities.

1. Software Coding

• During software coding, classes are coded and a clean compilation produced.

•	 Coding standards and naming conventions PIs are followed during this process. A
different coding standard is provided for each language used on ECS SDPS.

•	 A set of step-by-step unit test procedures is developed to verify that the requirements
are satisfied.

2. Peer Review

•	 Peer reviews are conducted to ensure that the code implements the allocated
requirements and complies with project standards.

•	 In addition to the source code and design artifacts, the unit test cases and procedures
are reviewed. For the official code and unit test artifact list, refer to the code and unit
test peer review PI.

4-6 308-CD-0001-008

3. Unit Testing

•	 After the code is peer reviewed and the defects from the peer review resolved, the
component must be tested to ensure that its allocated requirements (i.e., the
requirements allocated up through the next release) are satisfied.

•	 The software developer conducts a unit test walkthrough with an appropriate
subsystem or technical lead to verify the functionality of the unit. Quality Assurance
is also invited to the unit test walkthrough, although they are not required to attend.
The results of the unit test will also be placed into the respective SDF.

•	 Any discrepancies in the code are documented. Only code with non-critical
non-conformance reports (NCRs) in the newly introduced functionality are allowed to
pass the unit test.

4. Merging to the baseline

•	 The merge process is documented in a project instruction, but is summarized here at a
high-level.

•	 A merge request is submitted to the Software Turnover Tracking System (STTS)
upon completion of the unit test.

• The merge request is discussed at a meeting with all the subsystems represented

•	 The Construction Office leads the merge meeting. If the merge request is complete
and the integration lab is ready to integrate the functionality, the merge is approved
by the Construction Office.

•	 Upon approval, the software developer responsible for the code, uses the
configuration management tool ClearCase to “merge” the code to the appropriate
software release baseline.

The “merge” of the code to the appropriate release baseline signifies the end of the
implementation phase and the beginning of the integration phase. The software is built by SCM
and staged to an area within ClearCase where the integration lab can receive it.

4.1.3 Software Integration and Test

In the EDF, the Development Department is responsible for integrating the software into a
working software system, through the execution of integration procedures. The Construction
Office oversees the integration. Problems with the software are resolved through an iterative
approach of writing NCRs, fixing them, merging them to the baseline, and updating verifying the
NCR fixes. The NCRs that are written are considered “informal” NCRs since they are found
internally. The software development project instruction for NCRs defines the process for these
NCRs from the time of submittal through resolution including the definition of the severity of the
NCRs.

4-7 308-CD-0001-008

When all the severity 1 and 2 NCRs have been resolved for a particular integration procedure, a
formal run is executed. The Construction Office oversees the procedure execution. Quality
Assurance and the System Verification group are invited to attend. The results are documented
on a test execution form. Only non-critical NCRs can exist in order for the integration procedure
to be considered a successful execution. These non-critical NCRs are recorded in the NCR
database and on the test execution form. The test execution form is saved in a test execution
folder to be turned over to System Verification at the Software Turnover Meeting.

When all of the required integration procedures for a release have been successfully executed, a
Software Turnover Meeting (STM) is conducted. The STM will ensure that the software tested
meets the corresponding Level 4 requirements, and the integration test documentation is
complete. The Construction Office provides direction to SCM to generate a code baseline and tar
file(s) of executables prior to the meeting in preparation for the turnover to test. The Systems
Verification group determines the readiness of the product for turnover based on the items
supplied by the Construction Office. The SED chairman of the Science Development CCB has
signature authority to accept the delivery of the software. The items provided for the STM are
documented in PIs.

4.1.4 System Installation in the VATC

Following the STM, the System Verification group installs the system in the VATC for system
verification and acceptance testing. SCM provides the tar files generated prior to the STM to the
System Verification group for this activity. A critical function of the installation is to validate the
system will work outside of the EDF and that the installation instructions are complete. Formal
checkout procedures are executed, in full or in part, to characterize the success of the installation.
NCRs associated with configuration problems as a result of the installation will be forwarded to
the EDF. This allows time to fix the installation issues before delivering the release to the
Distributed Active Archive Centers (DAACs). Fixes are provided to the System Verification
group as patches and are regression tested in the VATC, prior to the CSR.

4.1.5 Acceptance Test

At the completion of the installation and checkout of the release, a Test Readiness Review (TRR)
is held. The purpose of the TRR is to assess the readiness for the start of acceptance tests. The
problems found in installation and checkout are assessed as well as the readiness of the
acceptance test procedures. The pre-installation serves as a pathfinder for the installation of the
formal delivery occurring after CSR.

Acceptance testing consists of executing operational scenarios on the system. Acceptance test
procedures are developed during design and implementation, debugged during integration, and
approved by SED and the customer. The System Verification group, to the maximum extent
possible, establishes representative site configurations within the VATC to verify the site-unique
testing to be performed in the field.

After TRR, the System Verification group begins to execute the acceptance test procedures in the
VATC. Each procedure is dry run first. After successful dry runs of the procedure, a formal run
is scheduled with IV&V and the customer. Quality Assurance also witnesses formal runs of the

4-8 308-CD-0001-008

tests on a sampling basis. Upon completion of the full set of acceptance tests, a Consent to Ship
(CSR) review is held and the software is shipped and installed in the field (the DAACs).

Problems found during acceptance testing are documented in NCRs. The Development
department resolves the NCRs and supplies patches to the release as requested by the System
Verification group. Refer to section 4.1.8 “Non-conformance Reports” for more discussion on
how NCRs are resolved.

The System Verification group then has the responsibility for conducting a subset of the
acceptance testing on the ECS SDPS system at each site. Complete details concerning the
acceptance test phase are provided in the Overall System Acceptance Test Plan (409-CD;
Release 5A and subsequent releases).

At the end of the acceptance test phase, a Site Readiness Assessment (SRA) is conducted. The
results of site release testing are presented at the SRA, and the review board determines whether
the release is ready to be incorporated into the operational system. Acceptance is based on the
results of the system acceptance tests, documentation of those tests, open NCRs, other system
documentation (e.g., operations, maintenance, training, and logistics documentation), FCA and
PCA audits, and the operability and maintainability of the new release (based on
recommendations of the DAAC representatives). At the last release of the system, a Release
Readiness Review (RRR) is conducted in place of the SRA. The content of the RRR is the same
as the SRA, but the RRR marks the completion of the system development.

4.1.6 Performance Verification

The Performance Verification Center (PVC) was established to test the system under a load
equivalent to the load that will be present during operations. Special test procedures are defined
to test the performance and stability of the system under operations loads. Parallel to the system
being tested against the functional requirements in the VATC, the system will be tested against
performance criteria in the PVC. NCRs are generated for performance issues just as they are
written for functionality issues. Patches are applied and the performance regression tested until
the release performs satisfactorily in order to deploy. This must be accomplished prior to the
RRR of a release.

4.1.7 Documentation

During the preliminary and detailed design phase, the software deliverables referenced in
Table 4.1-1 will be generated. These deliverables will consist of redlines or change pages of the
existing documents. After implementation and integration, these redlines are incorporated into a
full document set of “as-built” documentation.

4-9 308-CD-0001-008

Table 4.1-1. Software Design Documentation

Document # Document Name Description

305/DV2 Release x Segment/Design Specification Provides details on the context and design
of CSCIs, at the Unix process level. In
addition, information about libraries and
classes are provided for pointers into the
code.

313/DV2 Release x Internal ICDs Provides details of interfaces between
CSCIs including protocol information.
Scenarios are used to illustrate interfaces.
Tables provide high-level information about
the interfaces such as whether they are
remote procedure call interfaces or low-
level socket calls.

609/DV2 Release x Operations Tools Manuals Provides details of operator tools (the
graphical user interfaces). Each operator
tool is explained without regard to the
procedures being operated. Other
documents discuss the procedures used to
perform functions of an operator.

311/DV2 Release x Database Design Specification Provides information about the database
tables, columns, relationships, indexes,
etc. Includes everything associated with
the physical implementation of databases
in the system.

4.1.8 Peer Reviews

Peer reviews are internally conducted reviews focused on identifying defects in software
development artifacts. On the ECS SDPS project, there are three methods possible for peer
reviews: inspection, routing, and walkthrough.

•	 Inspection: A peer review where the material is distributed in advance of a meeting, which is
held to discuss the defects found by the participants.

•	 Routing: A peer review where the material is distributed and individuals provide written
comments back to the author and review lead. There is no meeting to discuss the issues.

•	 Walkthrough: A peer review where the material is presented and discussed in a meeting. The
material is not distributed in advance.

The project and work instructions for peer reviews discuss these methods in detail and define
criteria of when to use each. The criteria are used for both new capabilities and NCR fixes. When
a new capability or system requirement is defined, the developer or technical lead, must estimate
the amount of change required. The table in the project instruction is used to determine whether
the software life-cycle should begin at preliminary design, detailed design, or implementation.
For example, a new capability requiring of 5 lines of new code might not require a peer review

4-10 308-CD-0001-008

of any kind, where a new capability of 200 SLOC might require the developer to present a
detailed design and then move on to implementation. The same methodology is used for NCR
fixes.

The participants in the review are internal to the project and are determined based on the type of
work product being reviewed. The work instructions for the specific work product type designate
the different departments that must be invited to the peer review. In addition, peers within the
developing organization are selected. The review team should be as small as possible in order to
maximize the amount of defects found and minimize the cost of the review.

Peer reviews are scheduled in the master schedule. The rework required for fixing defects are
also scheduled. This ensures that a phase does not complete without a peer review and that the
work-off period also must be designated as complete with a distinct activity. This also allows
visibility by other departments such as Quality Assurance into the peer review schedule.

Quality Assurance participates in peer reviews in an auditing role. They receive notification and
distribution of each of the packages. They schedule the peer reviews that will be audited and
produce an audit report for each review audited.

4.1.9 Non-conformance Reports and Patches

There are two types of NCRs on the ECS SDPS project. The “informal” NCRs are those NCRs
found for a release prior to the CSR of that release. The “operational” NCRs are those NCRs
found against a release in the field (installed at a DAAC). The process for each of these types is
not the same, although they are similar. There are project instructions that define the NCR states
(such as new, assigned, resolved, verified or closed), NCR severity (1-5), and responsibilities by
organization for moving the NCRs.

During the acceptance test phase, the System Verification group of SED may identify problems
(documented as “informal” NCRs) that must be fixed before the release can be shipped to the
DAACs. The Development department must fix the required NCRs using the standard
development process outlined in sections 4.1.2 through 4.1.4. The amount of change required
determines where in the life-cycle the NCR fix must begin. Refer to section 4.1.7 “Peer
Reviews” for more information on how this is determined. When the NCR fix or set of NCR
fixes is turned over to the System Verification group, a patch is installed in the VATC and the
acceptance tests that previously failed are repeated.

At the CSR for a release, any outstanding “informal” NCRs are transferred to the “operations”
NCR list since the release is being shipped to the site with known defects. After the CSR of a
release, problems may be identified at the DAACs. Maintenance and Operations project
instructions govern the definition and prioritization of these problems. Initially the problems are
documented as trouble tickets and when the trouble tickets are confirmed as a change to a
baseline, they become “operational” NCRs. The Development department resolves the NCRs
using the standard development process outlined in sections 4.1.2 through 4.1.4. The amount of
change required determines where in the life-cycle the NCR fix must begin. Refer to section
4.1.7 “Peer Reviews” for more information on how this is determined.

4-11 308-CD-0001-008

The Deployment IPT (Integrated Product Team) schedules the release of patches and
maintenance releases. Patches are turned over to the System Verification group for testing in the
VATC and then a Pre-Ship Review (PSR) is held. The patch or maintenance release contents are
based on the priorities of the “operations” NCRs. Maintenance and Operations project
instructions provide details on how the Deployment IPT works and the prioritization of trouble
tickets and “operations” NCRs.

The important aspect of this discussion is that the software development process is the same
regardless of whether the software being developed is for an “informal” NCR, an “operations”
NCR, or new functionality.

4.1.10 Process Variances

In order to diverge from the software development process, a process variance request must be
approved. A project instruction describes the process for this and the signature approval
authorities. This provides a mechanism to document and heighten awareness within the project
when a process does not make sense for a particular instance. Process variances also provide a
means to determine process improvements. If process variances are frequently being approved
for the same part of the process, then it may be time to change the process.

For example, an NCR fix that is stopping all storage of a particular kind of data at one DAAC
has a 125 SLOC change. The peer review process requires a three day inspection notification to
peer review the code change. A process variance request could be approved to reduce the three
day inspection notice to one day. An alternative process variance request could request to use the
walkthrough method instead of the inspection method, which only requires a one day notice.

4.2 Prototyping

Prototyping at this stage in the ECS SDPS Project consists of direction as approved by ESDIS in
Engineering Support Directives (ESDs). These ESDs have high-level schedules and information
on process embedded in them. Therefore there is no special reporting or management oversight
required for prototypes in general. Each ESD is managed according to the direction documented
in it.

4.3 Software Reuse

For the ECS SDPS project, software reuse consists of:

1) the use of COTS software,

2) the use of heritage software (software obtained from a non-commercial source external to
the ECS SDPS project, e.g. the Delphi class library or public domain class libraries), and

4-12 308-CD-0001-008

4.3.1 COTS Software

A significant portion of the ECS SDPS system consists of commercial off-the-shelf (COTS)
software. Integration of COTS software with ECS SDPS-developed applications is a major task
of the program. An ECS SDPS PI exists to define the process by which COTS software products
are identified, selected, and incorporated in the ECS SDPS system.

A COTS baseline, which defines all the COTS products used on the ECS SDPS project, is
maintained by SED. The COTS baseline must distinguish deliverable COTS software (COTS
software that is to be delivered as part of ECS SDPS) and development support COTS software
(COTS software that will be used at the EDF to support ECS SDPS development). Note that in
some cases a COTS software product may be both deliverable COTS and development support
COTS.

A significant amount of the effort with COTS is focused on maintenance and upgrades. COTS
vendors update their products and the ECS SDPS project must determine when it is appropriate
to integrate a new COTS version into the existing ECS baseline. A project instruction defines the
COTS upgrade process.

4.3.2 Heritage Software

During the development of the ECS SDPS Project, heritage software (i.e., software developed on
previous projects or publicly available) will be used whenever feasible to reduce life-cycle costs.
However, potential cost savings must be balanced against overall ECS SDPS goals (e.g.,
evolvability) and the rigor of the development process.

According to the ECS Performance Assurance Requirements (PAR), heritage software does not
have to be developed to ECS SDPS development guidelines. However, the application of PAR
software assurance requirements to any modifications to heritage software is required. In
addition, the PAR, Section 1.4.b, focuses on "establishment of suitability for use on ECS SDPS"
through:

1. requirements comparison

2. review of all Verification & Validation records

3. identification of all waivers and deviations

4. review of mission experience, problems, or anomalies

5. additional testing planned

An ECS PI describes the development life-cycle for heritage software. In general, heritage
software is not made to follow the ECS coding and design standards, since this would add extra
effort and reduce the benefits of using the heritage software.

4-13 308-CD-0001-008

This page intentionally left blank.

4-14 308-CD-0001-008

5. Software Quality

5.1 Software Quality Assurance Overview

The Quality Assurance organization ensures that software products developed, modified or
procured during the ECS SDPS contract (except prototype software used only to help in
requirements definition) comply with contractual requirements and standards, thereby promoting
the highest quality standards. Quality will be the joint responsibility of all ECS SDPS employees
during the ECS SDPS development and maintenance effort.

5.2 Quality Assurance Organization

The ECS SDPS project approach to ensuring that all software meets the performance assurance
requirements for ECS SDPS is managed in two ways. First, the process and procedures for
software development are documented herein and in the Project Instructions (PIs) referenced
throughout this document. Second, the Quality Assurance team provides an independent
monitoring, auditing, and corrective action function, which ensures that the approved software
development process and procedures have been followed or a variance request has been
approved. The ECS SDPS project will employ a quality program throughout the system
development life cycle.

The Software Quality Assurance (SQA) program is described in the ECS QA Plan, which has
been mapped to the Performance Assurance Implementation Plan (PAIP) DID 501/PA1. Specific
work instructions and quality assurance procedures are maintained in the Information
Technology (IT) homepage. The key SQA activities are summarized in this document.

The Quality Assurance organization will ensure the implementation of the approved software
development processes and standards identified in this document. To accomplish this, the
Quality Assurance Manager maintains a dual reporting role to the ITS Vice President and
General Manager, and the IGS Product Assurance Manager, thereby assuring attention and
authority through all levels of Raytheon. Additionally, the Quality Assurance organization will
be the focal point for system quality coordination with the Goddard Space Flight Center (GSFC)
Quality Assurance manager.

Members of the Quality Assurance team will be assigned to monitor, audit and ensure corrective
action of specific functional areas of the ECS SDPS project while reporting to the ECS Quality
Assurance Manager. The Quality Assurance personnel perform independent assessments of the
engineering development and test phases of the product. In this way, there is continuity of
coverage for verifying the process and product compliance of ECS SDPS project activities.

5-1 308-CD-001-008

5.2.1 Roles and Responsibilities

All members of the ECS Project will take an active role in SQA activities. To ensure the
appropriate completion of Quality Assurance activities the following roles and responsibilities
are defined:

• Quality Assurance Manager

− Ensure the ECS QA team is staffed appropriately

− Manage the ECS Quality Assurance budget

− Conduct performance evaluations of Quality Assurance staff

− Provide office space and appropriate tools to conduct quality assurance activities
to staff

− Ensure Quality Assurance Engineers receive the appropriate training

− Coordinate ISO Audits

• Quality Assurance Engineer Lead

− Allocate resources to functional areas to prepare and conduct quality assurance
evaluations

− Prepare monthly ECS Quality Assurance status reports

− Coordinate Quality Assurance activities with GSFC Performance Assurance
Office, ECS Project Management

− Conduct Quality Assurance presentations on request at ECS Project Management
Reviews

− Ensure correct Quality Assurance representation to the SEPG meeting in order to
learn of pending and upcoming process changes.

• Quality Assurance Engineers

− Ensure the appropriate standards, processes, and procedures are selected,
implemented, and adhered to by performing evaluations against consistent
criteria.

− Initiate problem avoidance by disseminating evaluation results and supporting
corrective action to resolve identified discrepancy issues.

5-2 308-CD-001-008

• ECS Functional Area Manager

− Approve and support the SQA activities

− Receive and act on discrepancy reports and escalated items

− Participate in SQA evaluations if required

− Provide the Quality Assurance Engineer access to the same tools as project
personnel

• ECS Project Team Members

− Identify and report any inability to perform a procedure to the project manager,
functional area manager, and Quality Assurance Engineer through the process
variance request.

− Provide information needed to conduct a quality evaluation

− Identify and implement the solution for discrepancy issues

5.3 Software Quality Activities

The Quality Assurance Engineer will perform quality assurance evaluations to provide the ECS
Software Development Management insight into the use and adherence to the processes
documented in the software development plan. There are two types of evaluations performed,
audits and product evaluations. An audit is an objective examination of documented processes to
verify that company and or contractual requirements are being met. A product evaluation is an
objective examination of deliverable, non-deliverable, or non-developmental products to verify
they are in agreement with company and /or contractual requirement. In addition to conducting
quality assurance audits and product reviews, the Quality Assurance Engineer is responsible for
creating/updating audit and product evaluation criteria, preparing and maintaining the results of
audits, product evaluations, and cited deficiencies. The Quality Assurance Engineer will also
provide periodic quality assurance status reports.

5.3.1 QA Audits

The following list the software development processes, as well as system engineering processes
in which software development is an active participant, that will be evaluated by the Quality
Assurance Engineers:

• Preliminary Design

• Detailed Design

• Implementation

• System Installation in the VATC

5-3 308-CD-001-008

• Acceptance Test

• Software Integration and Test

• Peer Review

5.3.2 QA Product Evaluations

The Quality Assurance Engineers perform product evaluations in accordance with ITS Quality
Assurance Procedures. The following list the work products that will be evaluated by the Quality
Assurance Engineer:

• 305/DV2 Release x Segment/Design Specification

• 313/DV2 Release x Internal ICDs

• 609/DV2 Release x Operations Tools Manuals

• 311/DV2 Release x Database Design Specification

5.3.3 Quality Assurance Audit Criteria

The Quality Assurance Engineer will create audit and product review criteria based on the
tailored ECS /IPDS tailored task descriptors, as well as existing plans, corresponding project
instructions, and work instructions. Quality Assurance Engineers will follow the procedures
maintained on the Information Technology (IT) home page to develop consistent and objective
criteria for quality evaluations.

5.3.4 Quality Assurance Deficiency Reporting

The Quality Assurance Engineer will prepare and maintain the results of audits, product
evaluations, and cited deficiencies according to the Quality Assurance Deficiency Reporting
Procedure, 19-0-14. This procedure defines the criteria for the Quality Assurance Engineer to
report deficiencies as either Corrective and Preventive Action Reports (C/PAR) or Deficiency
Reports. Additionally, this procedure defines the steps taken in reporting deficiencies to higher
levels of management until resolution is achieved. This procedure also describes the use of a
Quality Assurance Tracking Database that is used to record quality assurance evaluations. The
Quality Assurance Engineer will also be responsible for filing hard copy of the evaluation and
corresponding discrepancy reports.

5.3.5 Quality Assurance Status Reporting

The Quality Assurance Engineer will provide a monthly status report to the Development
Director. The report will address activities that are completed or in process during the last
reporting period, as well as contain a list of activities to be started or completed during the next
reporting period. The report will also identify all open issues and all issues closed during the
previous reporting period.

5-4 308-CD-001-008

5.4 QA Resources and Schedule

ITS Quality Assurance Program provides office space and equipment to support the Quality
Assurance Engineers. ITS Quality Assurance Program will provide software that is unique to
supporting the Quality Assurance records tracking system. The appropriate SQA training is
handled by the ITS Quality Assurance Training Program.

The following represents the standard tools used by the Quality Assurance Engineers:

• MS Project

• MS EXCEL

• MS WORD

• MS Power Point

• Other tools provided by the project

The Quality Assurance Engineer develops the SQA schedule in conjunction with the project
schedule and updates as needed. The schedule includes all SQA activities (that is, plan
development, criteria development, evaluations, SQA training, and SQA participation in other
related project activities). The schedule is maintained in the master schedule with the rest of the
project’s activities.

5-5 308-CD-001-008

This page intentionally left blank.

5-6 308-CD-001-008

6. Software Configuration Management

6.1 Configuration Management

This section covers plans and processes for configuration management (CM) of ECS SDPS
software. Under ESDIS direction, the ECS SDPS has the sole responsibility for all changes to
ECS SDPS products. Software configuration management is the responsibility of the
Configuration Management group, which resides in the ECS SDPS Project's System Engineering
Department. The Release Configuration Management Plan for SDPS, CDRL 102-CD-003,
contains a description of the CM process, responsibilities and tools.

To manage requirements during the ECS SDPS development, a requirements database exists. All
ECS SDPS requirements are based on the ECS Functional and Performance Requirements
Specifications (the Level 3 requirements). The ECS SDPS system requirements management
process consists of those functions traditionally performed to thoroughly understand
requirements at the inception of a development program, plus several functions designed to meet
the unique requirements of ECS SDPS. These unique ECS SDPS functions include:

• Expanded requirements traceability.

• Allocation to configuration items (software/hardware).

• Allocation to releases / drops.

• Allocation to test procedures (both integration and acceptance).

Configuration management PIs provide lower-level details on each of the CM activities
discussed in the following sections.

6.1.1 Configuration Identification

All of the configuration items controlled under CM are documented in ECS System Baseline
Specification (905-TDA-001). This document contains a listing of the items from the
configuration management database. The processes for updating the database and documentation
are described in CDRL 102-CD-003, Release Configuration Management Plan for SDPS and
CM PIs.

The ECS custom code components are not listed in the ECS System Baseline Specification. The
ClearCase tool contains all the information about all the custom code files and versions. The
Configuration Management Plan and CM PIs describe the use of ClearCase to control code. All
other configuration items are listed in the ECS System Baseline Specification and the
configuration management database.

6-1 308-CD-001-008

6.1.2 Configuration Control

Configuration control is maintained through Configuration Control Requests (CCRs) and
Configuration Control Boards (CCBs). CCRs must be submitted to the appropriate CCB in order
to change items under configuration control. For each configuration item, the configuration
management database contains the name of the CCB, which controls the item.

6.1.2.1 Reporting Documentation

Many forms are used in the ECS SDPS configuration control process. These forms are available
on the ECS Internal Server. Each form contains instructions or is described in a PI/WI. CM
retains the completed forms as a record of the changes to configuration items.

6.1.2.2 Review Procedures

Configuration control of baseline documentation defining ECS SDPS requirements, design, and
as-built software is implemented by CCBs. CCB PIs discuss the process for review and approval
of changes on the ECS SDPS Project and provide details on the responsibilities and membership
of each CCB. Additional details on the ECS CCBs are included in the Release Configuration
Management Plan for SDPS (CDRL 102-CD-003).

6.1.2.3 Storage, Handling and Delivery of Project Media

CM is responsible for establishing and controlling the Software Development Library (SDL).
The SDL is the repository for source code and test materials, including test scripts, input data,
output data, and test results. CM ensures that CCB-authorized material is archived and stored in
the library, and that no unauthorized changes are made to established software baselines. The
Data Management Office (DMO) controls hardcopy material after approval by a CCB.

CM is responsible for maintaining accountability for materials in the SDL, and for making and
releasing copies to internal and external users.

Archival of ClearCase is described in CM procedures for the backup and storage of Version
Object Base (VOB) data.

6.1.3 Software Development Library

The Configuration Management Plan for the ECS Project describes the process and tools for
maintaining the SDL. The ClearCase tool provides for the management of the code. The CM
organization provides scripts on top of ClearCase to provide better controls over the baseline and
to help the developers.

Developers use ClearCase during the development of the software from design through unit test.
After the unit test phase, a merge request is submitted and approved (refer to section 4.1.2 for
more details). Upon merging the code to the appropriate baseline, the CM group builds the
software for use in the integration lab. At the point when the release or patch is ready for
delivery outside of the EDF, the CM group performs a final build of the software and creates the

6-2 308-CD-001-008

appropriate tar files for delivery. Code or executables are only delivered to the sites through the
CM organization.

6.2 Software Migration

ECS SDPS software follows the processes and flow described in CDRL 102-CD-003, Release
Configuration Management Plan for SDPS, as it migrates from the individual programmer levels,
to the segment level, and then to the ECS SDPS system-level. In addition, software migrates
from each ECS SDPS release to its following release in a controlled manner. The Version
Description Document (VDD) is an integral part of all release deliveries by documenting the
contents of the release. Functional Configuration Audits (FCA) and Physical Configuration
Audits (PCA) verify all formal deliveries. Detailed information on VDDs, FCAs and PCAs can
be found in the Release Configuration Management Plan for SDPS CDRL 102-CD-003.

6.3 Configuration Management at Operational Sites

The emphasis changes from development to maintenance and operations when ECS SDPS
products are delivered to operational sites. Details of these activities are also included in CDRL
102-CD-003, Release Configuration Management Plan for SDPS. Maintenance and Operations
PIs and the Maintenance and Operations Management Plan (601-CD-001) provide details for
operational site configuration management, including the specific roles and responsibilities of the
operational CCBs.

6.3.1 Configuration Status Accounting

Configuration status accounting consists of recording and reporting information about the
configuration status of the ECS SDPS Project's documentation, hardware, and software products,
throughout the Project life cycle. Periodic and ad hoc reports keep ECS SDPS Project
management and ESDIS informed of configuration status as the Project evolves. Reports to
support reviews and audits will be extracted as needed. CM maintains CM Web pages.
Configuration Status Accounting is described in CDRL 102-CD-003 Release Configuration
Management Plan for SDPS. Project instructions provide additional details on configuration
status accounting.

6.3.2 Configuration Audits

Configuration auditing is the means by which management ensures that both the technical and
administrative integrity of the product are being met throughout the Project development life
cycle. The audit process consists of CM self-audits, ECS SDPS Project internal audits, and
formal audits conducted by ESDIS. Formal audits are a prerequisite to formal approval of the
"as-shipped" configuration. They provide verification that each CI in the baseline being shipped
is logically related to the corresponding CI in preceding baselines. Configuration audits
(including FCAs and PCAs) are described in CDRL 102-CD-003 Release Configuration
Management Plan for SDPS.

6-3 308-CD-001-008

This page intentionally left blank.

6-4 308-CD-001-008

Abbreviations and Acronyms

CASE Computer Aided Software Engineering

CCB Configuration Control Board

CCR Configuration Change Request

CDR Critical Design Review

CDRL Contract Data Requirements List

CM Configuration Management

CMM Capability Maturity Model

CM Configuration Management

COTS Commercial Off-the-shelf

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSMS Communications and System Management Segment

CSR Consent to Ship Review

CSU Computer Software Unit

DAAC Distributed Active Archive Center

DCN Document Change Notice

DID Data Item Description

DMO Data Management Office

ECS Earth Observing System Data and Information System (EOSDIS) Core System

EDF ECS Development Facility

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

FCA Functional Configuration Audit

GSFC Goddard Space Flight Center

ILN Integrated Logic Network

IV&V Independent Verification and Validation

AB-1 308-CD-001-008

LAN Local Area Network

M&O Maintenance and Operation

NASA National Aeronatics and Space Administration

NCR Non-conformance Report

PAR Performance Assurance Requirements

PCA Physical Configuration Audit

PDL Program Design Language

PDR Preliminary Design Review

PI Project Instruction

QA Quality Assurance

RRR Release Readiness Review

SDF Software Development Folder

SDL Software Development Library

SDP Software Development Plan

SDPS Science Data Processing Segment

SDR System Design Review

SEPG Software Engineering Process Group

SLOC Source Lines of Code

TRR Test Readiness Review

AB-2 308-CD-001-008

Glossary

Acceptance Testing

Baseline

Build

ClearCase

Commercial Off the Shelf
(COTS)

Computer software
configuration item (CSCI)

Computer Software
Component (CSC)

Computer Software Unit
(CSU)

Configuration

Configuration change
control

Configuration Change
Request (CCR)

Configuration Item (CI)

Verification that is conducted to determine whether a release
satisfies its acceptance criteria and that provides the Government
with information for determining whether the release should be
accepted.

Identification and control of the configuration of software (i.e.,
selected software work products and their descriptions) at given
points in time.

An assemblage of threads that produces a gradual buildup of
system capabilities. Builds are combined with other builds and
threads to produce higher-level builds.

A COTS automated tracking and control tool by Atria in use on
the ECS project.

COTS is a product, such as an item, material, software,
component, subsystem, or system, sold or traded to the general
public in the course of normal business operations at prices based
on established catalog or market prices.

A configuration item comprised of computer software
components (CSCs) and computer software units (CSUs).

A distinct part of a computer software configuration item. CSCs
may be further decomposed into other CSCs and computer
software units.

An element specified in the design of a Computer Software
Component (CSC) that is separately testable.

The functional and physical characteristics of hardware,
firmware, software or a combination thereof, as set forth in
technical documentation and achieved in a product.

The systematic coordination, evaluation, and release of approved
changes to an established baseline.

A document that request and justifies a change to a configuration.

An aggregation of hardware, firmware, software or any of its
discrete portions, which satisfies an end use function and is
designated for configuration management.

GL-1 308-CD-001-008

Configuration
Management Tool

Consent to Ship Review
(CSR)

Critical Design Review
(CDR)

DDTS

ECS

Hardware

Hardware Configuration
Item (HWCI)

Incremental Release
Review (IRR)

Independent Verification
and Validation (IV&V)

Informal NCR

Inspection

Integration

Software tool for doing automated configuration management of
source code, scripts, documentation, and other computer files.

Review to determine the readiness of a release for transition to
sites for acceptance testing.

A detailed review of the "code-to" design is performed, including
details such as COTS selection and heritage software, and their
interfaces with the rest of the release software. Critical Design
Review signifies that the CSCI is ready to begin development
(for the corresponding release).

Distributed Defect Tracking System. A COTS problem reporting
system used by the ECS project.

EOSDIS Core System

That combination of subcontracted, COTS, and government
furnished equipment (e.g., cables and computing machines) that
are the platforms for software.

A configuration item comprised of hardware components.

At the conclusion of the Preliminary Design phase an IRR is
conducted, to promote a common understanding between the
ECS SDPS project and ESDIS of the capabilities that ECS SDPS
must provide. This review includes an understanding of the
requirements through use case scenario presentations.

Verification and validation performed by a contractor or
government agency that is not responsible for developing the
product or performing the activity being evaluated. IV&V is an
activity that is conducted separately from the software
development activities governed by the ECS contract.

A Non-Conformance Report tracked in DDTS during the
development phase, whose longevity ends at TRR. It is a non-
reportable item.

The visual, manual examination of a software work product and
comparison to the applicable requirement or other compliance
documentation, such as engineering drawings. A specific type of
peer review.

The orderly progression of combining lower level software
and/or hardware items to form higher level items with broader
capability.

GL-2 308-CD-001-008

Maintainability	 The measure of the ability of an item to be retained in or restored
to a specified condition when maintenance is performed by
personnel having specified skill levels, using prescribed
procedures and resources, at each prescribed level of
maintenance and repair.

Non-conformance	 The failure of a unit or product to conform to specified
requirements.

Non-Conformance Report A report of non-conformance found in a test phase. NCRs are
(NCR) tracked in DDTS and become reportable items after TRR.

Preliminary Design PDR is held for all CSCIs. The PDR addresses the initial design
Review (PDR)	 of the system down to the CSU level and will be held in the case

of Release A.

Problem Tracking Tool	 Software tool for doing automated tracking of problems found in
the software, as well as the status of the resolution of those
problems. DDTS selected for ECS.

Process A logical sequence of tasks by which a job is accomplished.

Product baseline	 The baseline which established the “as-built” configuration for
system-level integration and testing (I&T) and independent
acceptance testing. This baseline is validated by functional and
physical configuration audits, and reviewed and approved by the
Goddard Space Flight Center (GSFC) as part of release readiness
review.

Prototype	 Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on a faster time scale than the incremental and formal
development track.

Prototyping	 The construction of a solution of a design or implementation
problem, the feasibility of which needs to be determined as early
as possible in order to arrive at a critical decision.

Quality Assurance	 A subset of the total performance assurance activities generally
focused on conformance to standards and plans.

Release	 A delivery containing a specific set of requirements introduced in
the SSRP and agreed upon at the IRR.

Release Organization	 One of the functional subdivisions of the ECS, i.e., A/TRMM,
B/EOS AM-1 Landsat-7, C, D.

GL-3 308-CD-001-008

Release Readiness Review Conducted at the ECS system level for a GSFC project review
(RRR)	 team upon completion of release acceptance testing. The IATO

leads the RRR to determine, with the GATT and the COTR, if
the release is ready for transition to IV&V and Operations.

Requirement	 A statement to which the developed system must comply.
Varieties of requirements: levels 2, 3, 4; performance, functional,
design, interface.

Reusable Software	 Software developed in response to the requirements for one
application that can be used, in whole or in part, to satisfy the
requirements of another application.

Risk	 An event, action, or thing with a: 1) potential loss associated with
it, 2) uncertainty or chance involved, 3) some choice involved.

Risk Analysis	 Risk analysis is the application of a standardized methodology to
determine threats, risk factors, vulnerability exposures, and
potential losses. Risk analysis satisfies an organization's need to
protect the assets in which it has invested. It also identifies an
organization's potential performance problems and the adverse
affects these problems might present to the organization's ability
to meet its obligations. Finally, risk analysis is a mechanism by
which management can address these problems according to
relative importance based on financial analysis, and can develop
reasonable and cost-effective safeguards.

Risk Management	 The process of identifying, measuring, and controlling risk
factors associated with a program development and/or support
activity.

Scenario	 A description of the operation of the system in user’s
terminology, including a description of the output response for a
given set of input stimuli. Scenarios are used to define operations
concepts.

Site Operational Readiness SORRs shall be conducted to review the readiness of site
Review (SORR)	 operations to receive ECS software for a release. SORR may be

held coincident with CSR.

Segment	 One of the two functional subdivisions of the ECS, i.e., EMOS,
and SDPS.

Software	 A combination of associated computer instructions and computer
data definitions required to enable the computer hardware to
perform computational, data manipulation, and control functions
(to include parameters and procedures associated with software
products).

GL-4 308-CD-001-008

Software Development
Folder

Software Development
Library (SDL)

Standards Checking

Subsystem

System

System Design Review
(SDR)

System Requirements
Review (SRR)

Test

A repository for a collection of material pertinent to the
development or support of software. Contents typically include
(either direct or by reference) design considerations and
constraints, design documentation and data, schedule and status
information, test requirements, test cases, test procedures, and
test results.

A generic term which describes a controlled collection of
software, documentation, and associated tools and procedures
used to simplify the development and subsequent support of
software. An SDL provides storage of and controlled access to
software in both human readable and machine readable form.
Also, it may contain management data pertinent to the software
development project.

The process of checking whether or not source code and shell
scripts follow prescribed coding standards.

A combination of sets, groups, etc., which performs an
operational function within a system and is a major division of a
system

A composite of equipment, skills and techniques capable of
performing and/or supporting an operational role. A system
includes all equipment, related facilities, material, software,
services, and personnel required for its operation and support to
the degree that it can be considered a self-sufficient item in its
intended operational environment.

At the conclusion of the system design phase, a formal SDR is
conducted to address the system architecture and the definition of
the system level interfaces. This review signifies the completion
of system design.

The SRR encompasses a complete review of the ECS
specification and the EOS/EOSDIS Requirements that drive the
specification, it promotes a common understanding between the
Project and the Contractor of the capabilities that ECS must
provide. This review creates the initial ECS System baseline. It
signifies the end of Conceptual Phase and the start of Definition
Phase.

A procedure or action taken to determine under real or simulated
conditions the capabilities, limitations, characteristics,
effectiveness, reliability or suitability of a material, device,
system or method.

GL-5 308-CD-001-008

Test Readiness Review Conducted at the end of integration tests to assess the readiness
(TRR) of the software to enter the acceptance test process.

Thread A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion of a
scenario, or multiple scenarios.

Unit	 An assembly of any combination of parts (classes / methods)
mounted together, which are normally capable of independent
operation in a variety of situations.

Validation	 The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies
specified requirements.

Verification	 The process of evaluating the products of a given development
activity to determine correctness and consistency with respect to
the products and standards provided as input to that activity.

Version	 1) the culmination of a series of ECS releases, in conjunction
with incorporation of SCF-developed science data processing
software and unique site capabilities
2) a software file revision indicator

GL-6 308-CD-001-008

